Вопрос задан 08.01.2019 в 09:50. Предмет Геометрия. Спрашивает Каплий Варя.

В равнобедренном треугольнике АВС с основанием АС на сторонах АВ и ВС отмечены соответственно точки

М и Н так, что угол АСМ= углу САН. Докажите, что: а) треугольник МВН - равнобедренный; б) ВО перпендикулярно МН, где О - точка пересечения АН и СМ. ПОМОГИТЕ ПОЖАЛУЙСТА :) СРОЧНО НУЖНО
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бубенщикова Дарья.
Рассмотрим ΔАСМ и ΔСАН
угол НАС = угол МСА (по условию), угол НСА = угол МАС (как углы при основании равнобедренного ΔАВС), АС - общая ⇒ ΔАСМ = ΔСАН (по 2 ПРТ) ⇒ АМ = СН.
МВ = АВ - АМ, НВ = СВ - СН
А т.к. АВ = СВ (по условию), то МВ = НВ ⇒ ΔМВН - равнобедренный (доказали пункт а)

Рассмотрим ΔАВО и ΔСВО
В ΔАОС уголА = уголС (по условию) ⇒ АО = СО (по признаку равнобедренного треугольника), АВ = СВ (по условию), ОВ - общая ⇒ ΔАВО = ΔСВО (по 3 ПРТ) ⇒ уголАВО = уголСВО ⇒ ВО - биссектриса угла МВН, а т.к. ΔМВН - равнобедренный (доказано выше) ⇒ ВО - высота, т.е. перпендикулярна МН, что и т.д.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос