
Вопрос задан 29.12.2018 в 02:31.
Предмет Геометрия.
Спрашивает Петросян Асмик.
В Трапеции ABCD известны длины оснований AD -15, BC-5. Площадь трапеции BCNM, где MN - средняя
линия трапеции ABCD, равна 30. Найдите площадь трапеции ABCD.

Ответы на вопрос

Отвечает Фарбер Эльза.
Пусть BH - высота трапеции ABCD, BK - высота трапеции BCMN.
MN=1/2(5+15)=10
S MNCB = 1/2(BC+MN)*BK
BK= 30/(1/2)*15=4
BH=2BK=8
S ABCD = 1/2 (5+15)*8=80
Ответ: S ABCD=80
MN=1/2(5+15)=10
S MNCB = 1/2(BC+MN)*BK
BK= 30/(1/2)*15=4
BH=2BK=8
S ABCD = 1/2 (5+15)*8=80
Ответ: S ABCD=80


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili