
Вопрос задан 29.12.2018 в 01:36.
Предмет Геометрия.
Спрашивает Рудакова Ирина.
7. В прямоугольном треугольнике АВС угол В равен 30°. Вершина прямого угла С соединена отрезком с
точкой М, принадлежащей гипотенузе. Угол АМС равен 60°. Докажите, что СМ является медианой треугольника.

Ответы на вопрос

Отвечает Панова Дарья.
Впрямоугольном треугольнике один острый угол В=30градусам, значит второй острый угол А= 180-(90+30)=60град.
В тр.АМС угол АМС=60гр., но и угол МАС (или угол А тр.АВС)=60гр., третий угол МСА= 180-2*60=60гр.У нас получился равносторонний треугольникАМС. Но в тр.АВС катет, лежащий против угла в 30гр. равен половине гипотенузы, т.е.СА=1/2АВ.
Поэтому в тр.МСА все стороны равны 1/2АВ.
Рассмотрим тр.СВМ.Угол В=30гр., угол ВСМ=90-60=30гр., угол ВМС= 180-30*2=120гр.
Треугольник СВМ- равнобедренный,т.к. углы при основании равны. Поэтому-стороны ВМ=МС.=1/2АВ. Значит отрезок СМ делит гипотенузу пополам,т.е. является медианой треугольника АВС.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili