 
Вопрос задан 28.12.2018 в 15:20.
Предмет Геометрия.
Спрашивает Подмишечко Олег.
1. PA - перпендекуляр к плоскости треугольника ABC. На стороне BC выбрана точка D, причем PD
перпендекулярна BC. Докажите, что AD - высота треугольника ABC. 2. Основание AC равнобедренного треугольника ABC лежит в плоскости α. Из вершины B к плоскости α проведен перпендекуляр BO. На стороне AC выбрана точка P так, что OP перпендекулярна AC. Найдите длину BP, если |AB| - |BC| = 26 см, |AC| = 48 см. 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Плетнёва Аля.
                
     1.
---
PA ⊥ (ABC) ;
D ∈ [BC] ;
PD ⊥ BC .
------
Док-ать AD ⊥ BC ( AD - высота треугольника ABC) ?
 
Непосредственно следует из теоремы трех перпендикуляров :
AD проекция наклонной PD на плоскости треугольника ABC и
BC ⊥ PD ⇒ BC ⊥ AD .
2.
---
AC ∈ α ( сторона (здесь основание) AC треугольника ABC лежит в плоскости α ;
|AB| = |BC| = 26 см ( а не AB| = |BC| = 26 см ) ;
|AC| = 48 см ;
BO ⊥ α , O ∈ α ;
OP ⊥ AC .
------
BP - ?
OP проекция наклонной на плоскости α .
OP ⊥ AC ⇒ BP ⊥ AC (по обратной теореме трех перпендикуляров)
* BP высота равнобедренного треугольника ABC провед. к основ . AC*
Но треугольник ABC равнобедренный, поэтому BP еще и медиана
т.е. AP =CP =AC/2 =48/2 =24 (см) .
Из Δ ABP по теореме Пифагора :
BP =√ (AB² - AP² ) = √ (26² - 24² ) =√ (26 - 24 )(26 + 24) =√ (2*50 )=10 (см) .
ответ : 10 см .
                                        ---
PA ⊥ (ABC) ;
D ∈ [BC] ;
PD ⊥ BC .
------
Док-ать AD ⊥ BC ( AD - высота треугольника ABC) ?
Непосредственно следует из теоремы трех перпендикуляров :
AD проекция наклонной PD на плоскости треугольника ABC и
BC ⊥ PD ⇒ BC ⊥ AD .
2.
---
AC ∈ α ( сторона (здесь основание) AC треугольника ABC лежит в плоскости α ;
|AB| = |BC| = 26 см ( а не AB| = |BC| = 26 см ) ;
|AC| = 48 см ;
BO ⊥ α , O ∈ α ;
OP ⊥ AC .
------
BP - ?
OP проекция наклонной на плоскости α .
OP ⊥ AC ⇒ BP ⊥ AC (по обратной теореме трех перпендикуляров)
* BP высота равнобедренного треугольника ABC провед. к основ . AC*
Но треугольник ABC равнобедренный, поэтому BP еще и медиана
т.е. AP =CP =AC/2 =48/2 =24 (см) .
Из Δ ABP по теореме Пифагора :
BP =√ (AB² - AP² ) = √ (26² - 24² ) =√ (26 - 24 )(26 + 24) =√ (2*50 )=10 (см) .
ответ : 10 см .
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			