Вопрос задан 18.04.2018 в 07:16. Предмет Геометрия. Спрашивает Михайлус Ксюша.

Квадраты двух меньших сторон треугольника относятся как 1:2, причем против меньшей из них лежит

угол в 30 градусов. Найти больший угол треугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Репникова Лиза.

Обозначим эти стороны за a и b, углы, противолежащие им, соответственно за A и B. Используя теорему синусов и исходя из условия задачи, составим систему:
a²/b² = 1/2
a/sinB = b/sinA

a/b = 1/√2
a/sin30° = b/sinA

b =a√2
2a = a√2/sinA

sinA = a√2/2a = √2/2.
arcsinA = 45°.
По теореме о сумме углов треугольнике больший угол (угол С) равен 180° - 30° - 45° = 105°.
Ответ: 105°.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос