Вопрос задан 15.11.2018 в 02:42. Предмет Геометрия. Спрашивает Романов Саня.

Диагональ АС делит трапецию ABCD на два подобных треугольника АВС и DCA. Основания трапеции ВС = 8

см, AD = 18 см. Найдите длину диагонали АС.(помгите пожалуйста,очень срочно надо((
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сафина Яна.
Если треугольники подобны, то их углы соответственно равны. Для начала нам нужно узнать, какие углы между собой равны, чтобы составить отношение. Итак. Угол  ВСА=угол АСD как накрест лежащие,  потому что ВС||AD. Значит, у нас есть по одному равному углу, и мы можем составить отношение площадей этих треугольников (площади треугольников, в которых есть по одному равному углу, относятся как произведение сторон, заключающих эти углы):

 \frac{S_{ABC}}{S_{ADC}} = \frac{BC*AC}{AC*AD} = \frac{BC}{AD} = \frac{8}{18}= \frac{4}{9}

Есть такое свойство: площади подобных треугольников относятся как квадрат коэффициента подобия. Значит, коэффициент подобия этих треугольников:  \sqrt{ \frac{4}{9} } = \frac{2}{3} .

Теперь ищем другие равные углы. Угол ВАС не может быть равен углу АСD, потому что тогда АВ||СD, а такого быть не может, потому что боковые стороны трапеции по определению не параллельны, значит, угол ВАС= угол АDC, а угол АВС= угол ACD. Теперь мы можем составить отношение сторон, не забывая, что у нас есть коэффициент подобия:

 \frac{BC}{AC} = \frac{AB}{CD} = \frac{AC}{AD} = \frac{2}{3} =\ \textgreater \ \\\\
=\ \textgreater \  AC= \frac{3*BC}{2}= \frac{3*8}{2}=3*4=12

Ответ: АС=12.

Если не сработал графический редактор, то обновите страницу
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос