В треугольнике АВС провели отрезок MN ПАРАЛЛЕЛЬНО СТОРОНЕ АС Найдите ВСесли АС=20 см,MN= 10 см,NC=4
смпожалуйстаОтветы на вопрос
        тругольник АВС и MBN подобны и относятся как 2:1отсюда следует ВС=8см
            Для решения этой задачи мы можем воспользоваться параллельной теоремой Талеса, которая гласит: "Если две прямые параллельны и пересекают две другие прямые, то отрезки на этих пересекающихся прямых будут пропорциональными."
Из условия задачи у нас есть треугольник ABC, где AC = 20 см, и проведен отрезок MN параллельно стороне AC. Также известно, что MN = 10 см и NC = 4 см. Мы хотим найти длину отрезка VC.
Поскольку MN || AC, мы можем применить параллельную теорему Талеса. Давайте обозначим длины отрезков следующим образом:
AC = 20 см (дано) MN = 10 см (дано) NC = 4 см (дано) VC = ? (неизвестно)
Теперь мы можем записать пропорцию на основе параллельной теоремы Талеса:
VC / NC = MN / AC
Подставим известные значения:
VC / 4 см = 10 см / 20 см
Теперь давайте решим эту пропорцию, чтобы найти длину отрезка VC:
VC / 4 = 1/2
Умножим обе стороны на 4, чтобы избавиться от деления:
VC = 4 * (1/2) = 2 см
Итак, длина отрезка VC равна 2 см.
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			