
Вопрос задан 01.11.2018 в 16:58.
Предмет Геометрия.
Спрашивает Блинова Катерина.
На сторонах треугольника внешним образом построены квадраты. Найдите площадь треугольника,
вершинами которого являются центры этих квадратов(О1,02 И О3), если стороны треугольника равны 3, 4 и 5.


Ответы на вопрос

Отвечает Калинчук Каролина.
Из рисунка (см. вложение) более-менее очевидно, что O2C - биссектриса прямого угла ACB (симметрия налицо). А т.к. углы АСО1, ВСО3 по 45 градусов, то О2С - высота в треугольнике О1О2О3.
Дальше все ясно, искомая площадь равна 1/2*7/sqrt(2)*7/sqrt(2)=49/4.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili