Вопрос задан 25.10.2018 в 03:42. Предмет Геометрия. Спрашивает Ткачук Владочка.

Из точек A и B плоскости альфа проведены вне ее параллельные отрезки: AK=16см и BM=12см. Прямая MK

пересекает плоскость альфа в точки C. найдите расстояние AC, если AB=9см. Рассмотрите обо случая. пожалуйста срочно до завтрсшнего утра((
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дымский Саша.
S(amb)=S(bmc) => S(amb = 1/2 S(abc)

Ak - медиана треугольника AMB, так как BK=KM

S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)

Проведем ML параллельно AP

ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC

KP - средняя линия BMP=>PL=PB

PL=LC; PL=PB =>PL=LC=PB

S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6

S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12

S(mbc)/S(cmkp) = 1/4 S(abc)/ 5/12S(abc)= 3/5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given points A and B in plane alpha, and two parallel line segments AK and BM outside the plane. The line MK intersects plane alpha at point C. We need to find the distance AC, given that AB = 9 cm.

Solution

To find the distance AC, we can use the concept of similar triangles. Let's analyze the problem step by step.

1. First, let's find the length of the line segment MK. We are given that AK = 16 cm and BM = 12 cm. Since AK and BM are parallel, we can conclude that triangle ABM is similar to triangle MKC. Using the concept of similar triangles, we can set up the following proportion:

AB / MK = BM / KC

Substituting the given values, we have:

9 / MK = 12 / KC

Solving for MK, we get:

MK = (9 * KC) / 12

2. Next, let's find the length of the line segment KC. Since triangle ABM is similar to triangle MKC, we can set up another proportion:

AB / MK = BM / KC

Substituting the given values, we have:

9 / MK = 12 / KC

Solving for KC, we get:

KC = (12 * MK) / 9

3. Now, let's substitute the value of MK from step 1 into the equation for KC from step 2:

KC = (12 * ((9 * KC) / 12)) / 9

Simplifying the equation, we get:

KC = KC

This means that KC can have any value.

4. Since KC can have any value, we cannot determine the exact length of AC. However, we can determine the relationship between AC and AB. Let's set up a proportion using the concept of similar triangles:

AB / AC = BM / KC

Substituting the given values, we have:

9 / AC = 12 / KC

Rearranging the equation, we get:

AC = (9 * KC) / 12

Since KC can have any value, we can conclude that the distance AC is (9 * KC) / 12.

Answer

The distance AC, given that AB = 9 cm, is (9 * KC) / 12. The exact value of AC cannot be determined without knowing the length of KC. However, we have established the relationship between AC and AB using the concept of similar triangles.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос