
Вопрос задан 19.10.2018 в 05:45.
Предмет Геометрия.
Спрашивает Мельникова Инна.
Боковая поверхность правильной четырехугольной призмы имеет площадь 16 дм2.Диагональ основания
равна 4 корня из 2.Найдите площадь сечения призмы,проходящего через диагонали двух смежных боковых граней,имеющих общую вершину

Ответы на вопрос

Отвечает Кудрявцев Владимир.
в основании правильной четырехугольной призмы лежит квадрат. и она прямая.
значит все боковые грани равны, отсюда S/4 = s1 (s1 - площадь одной грани)
16/4 = 4 = s1
зная диагональ основания найдем ее сторону так как a√2 = d
4√2 = a√2, а = 4
s1 грани равно = а*b = (а сторона основания, b высота призмы)
4 = 4*b, b = 1
найдем диагональ грани по теореме пифагора: х" = 16+1, х = √17
на рисунке видно сечение: АВ1С
из этого треугольника найдем ее высоту L: L" = 17-8 =9
L = √9 = 3
s = h*a*1/2 = 3*4√2*1/2 = 6√2




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения данной задачи, нам нужно найти площадь сечения призмы, проходящего через диагонали двух смежных боковых граней, имеющих общую вершину.
Понимание задачи
Мы имеем дело с правильной четырехугольной призмой, которая имеет боков

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili