Вопрос задан 14.08.2018 в 19:38. Предмет Геометрия. Спрашивает Семашко Евгений.

В правильной треугольной пирамиде высота равна 4 см а боковое ребро 5 см.Найдите сторону основания

пирамиды.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рязанова Ольга.
Когда соединишь высоту и ребро получится прямоугольный треугольник с катетом 4 и гипотенузой 5 оттуда найдем второй катет по Пифагору и равна 3, высоту соединим еще с одним ребром оттуда получится равнобедренный треугольник со сторонами 3, 3 и третья сторона и есть сторона пирамиды. Из-за того что основание правильный треугольник то углы равны по 60. у равнобедренного треугольника углы соответсвенно равны 30, 30 и 120 градусам угол между сторонами 3 и 3 120 градусов. по теореме косинусов наидем сторону пирамиды a²=9+9-2*3*3*cos120=> a²=9+9+9=> a²=27 a=3√3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Side Length of the Base of a Right Triangular Pyramid

To find the side length of the base of a right triangular pyramid, we can use the given information of the height and the length of a lateral edge.

Given: - Height of the pyramid (h) = 4 cm - Length of a lateral edge (a) = 5 cm

We can use the Pythagorean theorem to find the side length of the base. In a right triangular pyramid, the height, the lateral edge, and the side length of the base form a right triangle.

Let's denote the side length of the base as x.

Using the Pythagorean theorem, we have:

x^2 = a^2 - h^2

Substituting the given values, we get:

x^2 = 5^2 - 4^2

Simplifying the equation:

x^2 = 25 - 16

x^2 = 9

Taking the square root of both sides:

x = √9

Therefore, the side length of the base of the pyramid is 3 cm.

Answer:

The side length of the base of the pyramid is 3 cm.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос