Вопрос задан 06.08.2018 в 19:08. Предмет Геометрия. Спрашивает Прорвин Роман.

Квадраттың периметрі 12 см.Бұл квадраттың екінші бір квадраттың ауданына қатынасы 1:4

қатынасындай.Екінші квадраттың диагоналінің ұзындығын есептеңдер
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гомонова Маша.
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Педагогическая деятельность в соответствии с новым ФГОС требует от учителя наличия системы специальных знаний в области анатомии, физиологии, специальной психологии, дефектологии и социальной работы.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Perimeter of a Square

The perimeter of a square is the sum of all its sides. In this case, the perimeter of the given square is 12 cm. To find the length of each side, we can divide the perimeter by 4, since a square has four equal sides.

Let's calculate the length of each side of the square:

12 cm ÷ 4 = 3 cm

Therefore, each side of the square measures 3 cm.

Area of the Second Square

The problem states that the area of the second square is in a ratio of 1:4 compared to the first square. Since the length of each side of the first square is 3 cm, we can calculate the area of the second square using this information.

The area of a square is calculated by multiplying the length of one side by itself. Let's calculate the area of the second square:

(3 cm)² = 9 cm²

Therefore, the area of the second square is 9 cm².

Diagonal Length of the Second Square

To find the diagonal length of the second square, we can use the Pythagorean theorem. The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

In the case of a square, the diagonal is the hypotenuse of a right triangle formed by two sides of the square. Since the sides of the second square are not given, we can use the area of the second square to find the length of one side.

The formula for the area of a square is:

Area = side²

Given that the area of the second square is 9 cm², we can solve for the length of one side:

side² = 9 cm²

Taking the square root of both sides, we find:

side = √9 cm

side = 3 cm

Now that we know the length of one side of the second square, we can calculate the length of the diagonal using the Pythagorean theorem.

Let's denote the length of one side of the second square as "s" and the length of the diagonal as "d". According to the Pythagorean theorem:

d² = s² + s²

d² = 2s²

Taking the square root of both sides, we find:

d = √(2s²)

Substituting the value of "s" as 3 cm, we can calculate the length of the diagonal:

d = √(2(3 cm)²)

d = √(2(9 cm²))

d = √(18 cm²)

d ≈ 4.24 cm

Therefore, the approximate length of the diagonal of the second square is 4.24 cm.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос