Вопрос задан 04.08.2018 в 00:45. Предмет Геометрия. Спрашивает Романова Софья.

Найти среднюю линию треугольника в равнобедренном треугольнике если она параллельна основанию

равного 12см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шпиталев Кирилл.
Средняя линия равна половине стороны, которой она параллельна. 12:2=6 см; ответ; 6
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения средней линии треугольника в равнобедренном треугольнике, параллельной основанию длиной 12 см, можно использовать следующий подход:

Определение средней линии треугольника

Средняя линия треугольника - это отрезок, соединяющий середины двух сторон треугольника. В равнобедренном треугольнике, средняя линия также является медианой и высотой.

Нахождение длины средней линии

Для нахождения длины средней линии в равнобедренном треугольнике, параллельной основанию, можно использовать следующую формулу:

Длина средней линии = (1/2) * основание

В данном случае, основание равно 12 см, поэтому:

Длина средней линии = (1/2) * 12 см = 6 см

Таким образом, длина средней линии треугольника в равнобедренном треугольнике, параллельной основанию длиной 12 см, составляет 6 см.

Пример

Давайте рассмотрим пример равнобедренного треугольника, где основание равно 12 см. Мы можем нарисовать треугольник и отметить среднюю линию, которая будет параллельна основанию и иметь длину 6 см.

``` A / \ / \ /_____\ B C

AB = AC = 12 см BC - основание ```

В данном примере, средняя линия BD будет параллельна основанию BC и иметь длину 6 см.

Пожалуйста, обратите внимание, что приведенный ответ основан на предоставленных источниках, но не удалось получить конкретные цитаты, подтверждающие эту информацию.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос