Вопрос задан 28.07.2018 в 06:16. Предмет Геометрия. Спрашивает Цыренов Золто.

Даны векторы: а{1;2;-1}, b{-3;1;4}, с{3;4;-2}, d{2;-1;3}. Вычислите скалярное произведение

(а+2b)*(с-d)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Белов Егор.
Даны векторы: а{1;2;-1}, b{-3;1;4}, с{3;4;-2}, d{2;-1;3}. Вычислите скалярное произведение (а+2b)*(с-d).
Решение:
Умножение вектора на число: p*a=(pXa;pYa;pZa), где p - любое число.
Сложение векторов : a+b=(x1+x2;y1+y2;z1+z2) .
Разность векторов : a-b=(x1-x2;y1-y2;z1-z2).
В нашем случае:
Вектор (a+2b){1+2(-3);2+2*1;-1+2*4} или (a+2b){5;4;7}.
Вектор (с-d){3-2;4-(-1);-2-3} или (с-d){1;5;-5}.
Скалярное произведение этих векторов находим по формуле:
(a,b)=x1*x2+y1*y2+z1*z2 или в нашем случае:
(а+2b)*(с-d)=5*1+4*5+7(-5)=10.
Ответ: 10.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Сначала найдем векторы a+2b и c-d: a + 2b = {1; 2; -1} + 2 * {-3; 1; 4} = {1; 2; -1} + {-6; 2; 8} = {-5; 4; 7} c - d = {3; 4; -2} - {2; -1; 3} = {3-2; 4-(-1); -2-3} = {1; 5; -5}

Теперь вычислим скалярное произведение этих двух векторов: (-5*1) + (4*5) + (7*(-5)) = -5 + 20 - 35 = -20

Ответ: скалярное произведение (а+2b)*(с-d) равно -20.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос