
Площадь параллелограмма равна 70. Найдите периметр этого параллелограмма, если его высоты равны
5и7. Если можно с решением.Спасибо.

Ответы на вопрос




Problem Analysis
We are given the area of a parallelogram, which is 70, and the heights of the parallelogram, which are 5 and 7. We need to find the perimeter of the parallelogram.Solution
To find the perimeter of the parallelogram, we need to know the lengths of its sides. However, the given information does not directly provide the lengths of the sides.To solve this problem, we can use the formula for the area of a parallelogram: Area = base × height. In this case, we have two different heights, so we can use either one of them as the height and solve for the base.
Let's assume that the height of 5 corresponds to the base of the parallelogram. Using the formula for the area, we can find the length of the base:
Area = base × height 70 = base × 5 base = 70 / 5 base = 14
Now we know that the base of the parallelogram is 14. To find the perimeter, we need to double the sum of the lengths of the base and the sides. Since a parallelogram has opposite sides that are equal in length, we can use the base length to find the length of the other side.
Let's assume that the other side length is also 14. Now we can calculate the perimeter:
Perimeter = 2 × (base + side length) Perimeter = 2 × (14 + 14) Perimeter = 2 × 28 Perimeter = 56
Therefore, the perimeter of the parallelogram is 56.
Answer
The perimeter of the parallelogram is 56.

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili