
Найдите площадь прямоугольного треугольника если его катеты относятся как 3:4,а гипотенуза равна 25
см

Ответы на вопрос





Для нахождения площади прямоугольного треугольника, когда известны длины его катетов и гипотенузы, можно использовать следующую формулу:
Площадь = (половина длины первого катета) * (половина длины второго катета)
Для нашего треугольника катеты относятся как 3:4, и гипотенуза равна 25 см. Давайте обозначим длину первого катета как 3x и длину второго катета как 4x, где x - некоторый множитель. Мы знаем, что гипотенуза равна 25 см, поэтому можем использовать теорему Пифагора:
(3x)^2 + (4x)^2 = 25^2
9x^2 + 16x^2 = 625
25x^2 = 625
x^2 = 625 / 25
x^2 = 25
x = 5
Теперь мы можем найти длины катетов:
Первый катет = 3x = 3 * 5 = 15 см Второй катет = 4x = 4 * 5 = 20 см
Теперь, когда у нас есть длины катетов, мы можем найти площадь треугольника:
Площадь = (половина длины первого катета) * (половина длины второго катета)
Площадь = (0.5 * 15 см) * (0.5 * 20 см) = 7.5 см * 10 см = 75 квадратных см
Площадь прямоугольного треугольника равна 75 квадратным сантиметрам.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili