Вопрос задан 12.07.2018 в 23:11. Предмет Геометрия. Спрашивает Никитина Арина.

Основание пирамиды-прямоугольный треугольник с катетами 6 и 8 см. Высота пирамиды равна 12 см и

проходит через середину гипотенузы основания. Найдите площадь сечения пирамиды, проходящего через ее высоту и вершину прямого угла основания.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Колушкина Ксюша.

Плоскость сечения  СSH проходит через высоту пирамиды и вершину прямого угла С, следовательно эта плоскость перпендикулярна основанию пирамиды и является прямоугольным треугольником СНS. СН является медианой треугольника АВС. Найдем по Пифагору гипотенузу АВ основания.
AB=√(АС²+ВС²) = √(6²+8²) =10см. Медиана из прямого угла треугольника равна половине его гипотенузы (свойство), то есть СН=10:2=5см.
Тогда площадь сечения (прямоугольный треугольник СНS) равна
S=(1/2)*СН*НS = (1/2)*5*12=30см²
Ответ: площадь сечения равна 30см².


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос