Вопрос задан 12.07.2018 в 16:24. Предмет Геометрия. Спрашивает Плетнёв Кирилл.

Даны три точки точка A(0:1;-1) B(1:-1:2) С(3:1:0) Найдите косинус угла С треугольника ABC

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Виркунен Полина.

Эта задача на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. А для этого нам даны координаты. Найдем коориданты векторов AB,BC,AC. Для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.

AB(1-0;-1-1; 2+1)=AB(1;-2;3)

BC(3-1;1+1;0-2)=BC(2;2;-2)

AC(3-0;1-1;0+1)=AC(3;0;1)

Теперь найдем длину этих векторов.

|AB|=\sqrt{1^2+(-2)^2+3^2}=\sqrt{1+4+9}=\sqrt{14}

|BC|=\sqrt{2^2+2^2+(-2)^2}=\sqrt{4+4+4}=\sqrt{12}

|AC|=\sqrt{3^2+0^2+1^2}=\sqrt{9+1}=\sqrt{10}

Теперь запишем теорему косинусов, используя косинус угла С.

AB^2=BC^2+AC^2-2AC*BC*cosC

14=12+10-2*\sqrt{12}*\sqrt{10}*cosC

2\sqrt{120}*cosC=22-14

2*2\sqrt{30}*cosC=8

cosC=2/\sqrt{30}=\frac{\sqrt{30}}{15}

Нужно все проверить!

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос