Вопрос задан 11.07.2018 в 17:35. Предмет Геометрия. Спрашивает Ткачук Денис.

радиус OB окружности с центром в точке О пересекает хорду MN в ее середине - точке К. Найдите длину

хорды MN, если КВ=1см, а радиус окружности равен 13см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Никитина-Дикова Ольга.

Есть такая теоремка: диаметр, перпендикулярный хорде, делит ее пополам. В нашем случае радиус делит хорду пополам, а значит, он ей перпендикулярен!

OK=OB-KB=13-1=12

В треугольнике OMК OM=13, OK=12

по теореме Пифагора

MK=\sqrt{OM^2-OK^2}=\sqrt{169-144}=5

Значит, MK=5, тогда MN=2MK=10.

Ответ: 10

 

0 0
Отвечает Лукин Александр.

1) OB=MO=OK=13см как радиусы окружности

2) ОК =OB-KB=13-1=12

3) Рассмотрим треугольник МОК,Он прямоугольный по условию (Угол ОКМ=90 градусов, см на график)

4) MB^2=OM^2-OK^2=169-144=25

MB=5

5) Т.К. МВ=BN, то MN=5+5=10

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос