
На бісектрисе кута АBC позначили точку P і через неї провели пряму паралельну ВС. Ця пряма
перетинає сторону ВА в точці N. Знайдіть кути BPN і BNP якщо кут ABC=120 

Ответы на вопрос

Поскольку BP — биссектриса угла ABC, то ∠ABP = ∠PCB = 60°.
∠CBP = ∠BPN = 60° как накрест лежащие при NP ║ BC и секущей ВР. Тогда ∠BNP = 180° - (60° + 60°) = 60°.
Ответ: ∠BPN = ∠BNP = 60°.




Задача полягає в знаходженні кутів BPN і BNP в трикутнику BPN, в якому маємо дані наступні відомості:
- Кут ABC = 120°.
- Точка P лежить на бісектрисі кута ABC, тобто куті BPC = 60° (половина величини кута ABC).
Основна ідея в тому, щоб знайти величину кута BPN, враховуючи те, що пряма PN паралельна стороні BC. Оскільки BC і PN паралельні, то утворені ними відповідні кути рівні. Тобто кут BPN = кут BCP.
Знаючи, що кут BCP = 60°, ми можемо знайти кут BPN.
Отже, кут BPN = 60°.
Далі, для знаходження кута BNP ми можемо використати властивість бісектриси в трикутнику BNC. Оскільки точка P лежить на бісектрисі кута BNC, то відповідний кут BNP дорівнює половині кута BNC. А так як кут BNC = 180° - кут ABC (оскільки BNC - зовнішній кут трикутника ABC), то:
Кут BNC = 180° - 120° = 60°.
Отже, кут BNP = 1/2 * 60° = 30°.
Підсумовуючи: Кут BPN = 60°. Кут BNP = 30°.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili