
Вычисли третью сторону треугольника, если две его стороны соответственно равны 2 см и 3 см, а угол
между ними равен 120°. Ответ: третья сторона равна √ см.

Ответы на вопрос

Ответ: Третья сторона равна √7 см.
Объяснение:
а=√(2²+3²-2*2*3*cos120°) = √4+9-12*0.5=√13-6=√7≈2.65 см



Чтобы вычислить третью сторону треугольника, мы можем использовать закон косинусов. По данной информации у нас есть две известные стороны треугольника (2 см и 3 см) и угол между ними (120°).
Закон косинусов утверждает следующее:
c^2 = a^2 + b^2 - 2ab * cos(C),
где c - третья сторона треугольника, a и b - известные стороны, C - угол между ними.
В нашем случае, a = 2 см, b = 3 см и C = 120°. Подставляя эти значения в формулу, получаем:
c^2 = 2^2 + 3^2 - 2 * 2 * 3 * cos(120°).
Вычисляем значения:
c^2 = 4 + 9 - 12 * cos(120°).
cos(120°) = -0.5 (косинус 120° равен -0.5).
c^2 = 4 + 9 - 12 * (-0.5).
c^2 = 4 + 9 + 6.
c^2 = 19.
Таким образом, третья сторона треугольника равна √19 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili