Вопрос задан 05.07.2018 в 10:57. Предмет Геометрия. Спрашивает Бегунова Даша.

Окружность, проходящая через вершины В и С треугольника АВС, пересекает стороны АВ и АС в точках М

и N соответственно, а отрезки BN и CМ пересекаются в точке К. Если ∠ВАС=25°, ∠MCN=40°, то величина угла BKC равна ...?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Артемьев Данил.

∠MBN = ∠MCN = 40° (опираются на одну дугу)
Сумма углов в треугольнике равна 180°, значит
∠A + ∠ABC + ∠ACB = ∠A + ∠ABN + ∠NBC +∠ACM + ∠MCB = 25° + 40° + 40° + ∠NBC + ∠MCB = 180°
25° + 40° + 40° + ∠NBC + ∠MCB = 180°
∠NBC + ∠MCB = 75°
По теореме о сумме углов в треугольнике
∠BKC = 180° - ∠KBC - ∠KCB = 180° - (∠NBC + ∠MCB) = 180° - 75° = 105°
Ответ: 105°

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос