Вопрос задан 25.06.2023 в 01:51. Предмет Геометрия. Спрашивает Мосейкина Анюта.

через точку P по стороне BC треугольника ABC проведены прямые, парралельные сторонам AB и AC и

пересекающие эти стороны соответственно в точках K и M. Известно, что BP:PC = 2:3, AK = 9 и KP = 8. Найдите длины сторон треугольника ABC, если его периметр равен 47​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Масленников Макс.

Ответ:

АВ = 15, ВС = 12, АС = 20.

Объяснение:

Так как КР║АС, то ΔКВР подобен ΔАВС.

Коэффициент подобия:

k = ВС : ВР = (ВР +РС) : ВР = (2х + 3х) : 2х = 5х : 2х = 2,5

АС = КР · k = 8 · 2,5 = 20

КВ : АК = ВР : РС

КВ : 9 = 2 : 3

КВ = 9 · 2 : 3 = 6

АВ = КВ + АК = 6 + 9 = 15  

ВС = Р - АС - АВ = 47 - 20 - 15 = 12

Ответ: АВ = 15, ВС = 12, АС = 20.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте начнем с того, что у нас есть треугольник ABC, и точка P разделяет сторону BC в соотношении BP:PC = 2:3. Пусть BP равно 2x, а PC равно 3x, где x - некоторая положительная константа.

Известно, что AK = 9 и KP = 8. Теперь давайте рассмотрим треугольник AKP. Мы знаем его две стороны и хотим найти третью. Мы можем использовать теорему Пифагора:

AP^2 = AK^2 + KP^2 AP^2 = 9^2 + 8^2 AP^2 = 81 + 64 AP^2 = 145 AP = √145 AP = 5√29

Теперь у нас есть длина стороны AP. Мы также можем выразить длины сторон BP и PC, так как мы знаем их отношение к x:

BP = 2x PC = 3x

Теперь давайте рассмотрим треугольник ABC. Мы знаем длины сторон AK, KP, AP, BP и PC. Мы можем найти длины сторон BC, AC и AB, используя следующие равенства:

BC = BP + PC = 2x + 3x = 5x AC = AP + PC = 5√29 + 3x AB = AK + KP = 9 + 8 = 17

Теперь у нас есть выражения для длин сторон BC, AC и AB в терминах x. Мы также знаем, что периметр треугольника ABC равен 47:

Perimeter(ABC) = AB + AC + BC = 17 + (5√29 + 3x) + 5x = 47

Теперь давайте решим это уравнение относительно x:

17 + (5√29 + 3x) + 5x = 47 5√29 + 8x = 30 8x = 30 - 5√29 x = (30 - 5√29) / 8

Теперь, когда мы знаем значение x, мы можем найти длины сторон треугольника ABC:

BC = 5x = 5[(30 - 5√29) / 8] AC = 5√29 + 3x = 5√29 + 3[(30 - 5√29) / 8] AB = 17

Теперь у нас есть значения для длин сторон треугольника ABC. Вы можете вычислить их численные значения, чтобы получить ответ.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос