Вопрос задан 24.06.2023 в 22:43.
Предмет Геометрия.
Спрашивает Куцулима Богдан.
Cos13⁰×cos17⁰-sin13⁰×sin17⁰ помогите решить
Ответы на вопрос
Отвечает Щегольков Артем.
Ответ:
(√3) /2
Объяснение:
cos13⁰×cos17⁰-sin13⁰×sin17⁰=cos(17°+13°)=cos30°=(√3)/2
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения этого выражения мы можем воспользоваться формулой для разности углов косинуса:
cos(A - B) = cos(A)cos(B) + sin(A)sin(B)
В данном случае A = 13 градусов, B = 17 градусов. Подставим значения:
cos(13° - 17°) = cos(13°)cos(17°) + sin(13°)sin(17°)
Теперь вычислим значения косинусов и синусов для данных углов:
cos(13°) ≈ 0.9744 cos(17°) ≈ 0.9531 sin(13°) ≈ 0.2249 sin(17°) ≈ 0.3020
Теперь подставим значения:
cos(13° - 17°) ≈ 0.9744 * 0.9531 + 0.2249 * 0.3020
cos(13° - 17°) ≈ 0.9289 + 0.0679
cos(13° - 17°) ≈ 0.9968
Итак, значение выражения cos(13° - 17°) приближенно равно 0.9968.
Похожие вопросы
Геометрия 60
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
