
Вопрос задан 03.07.2018 в 13:17.
Предмет Геометрия.
Спрашивает Голуб Дмитрий.
Площадь параллелограмма ABCD равна 6. Найдите площадь параллелограмма A'B'C'D', вершинами которого
являются середины сторон данного параллелограмма (Картинка)


Ответы на вопрос

Отвечает Ерёмина Катя.
Площадь параллелограмма D'DCB' равна половине площади параллелограмма ADCB, так как D'B' соединяет середины сторон AD и CB. Площадь треугольника D'C'B' равна половине параллелограмма D'DCB', так как имеют общее основание и высоту.
Итак, треугольник D'C'B' равен 3/2.
Площадь параллелограмма A'D'C'B' равна двум площадям треугольника D'C'B', так как треугольник A'D'B' равен треугольнику D'C'B'.
Следовательно, площадь параллелограмма A'D'C'B' = 2*(3/2)=3.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili