
Вопрос задан 29.06.2018 в 04:14.
Предмет Геометрия.
Спрашивает Калугина Диана.
Через вершину В ромба АВСД проведена прямая ВМ, перепендикулярная его плоскости. Докажите, что
расстояние от точки М до прямых, содержащих стороны ромба АД и ДС, равны. ПОДСКАЖИТЕ ХОТЯ БЫ СВОЙСТВО, ПО КОТОРОМУ РЕШАТЬ.ЛОМАЮ ГОЛОВУ, НЕ МОГУ ПРИДУМАТЬ.

Ответы на вопрос

Отвечает Чугункова Александра.
Проведем ВК⊥AD и BH⊥CD.
ВК - проекция наклонной МК на плоскость ромба, значит МК⊥AD по теореме о трех перпендикулярах.
МК - расстояние от точки М до AD.
BH - проекция наклонной МН на плоскость ромба, значит МН⊥CD по теореме о трех перпендикулярах.
МН - расстояние от точки М до CD.
ΔВАК = ΔВСН по гипотенузе и острому углу (АВ = ВС и ∠А = ∠С),
значит ВК = ВН.
ΔМВК = ΔМВН по двум катетам (ВК = ВН и ВМ - общая), значит
МК = МН, что и требовалось доказать.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili