Вопрос задан 07.06.2023 в 09:31. Предмет Геометрия. Спрашивает Кулжабай Нурислам.

Які координати має точка K, відносно якої симетричною точки Q(-6; 21) і P(12;-3) (2;9) (-5;9

(3;9) (5;18)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Серокурова Екатерина.

Ответ:

К(3;9)

Объяснение:

т.К(Хк;Ук) - середина відрізка QP

Xк=(-6+12)/2=6/2=3

Ук=(21+(-3))/2=18/2=9

К(3;9)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб знайти координати точки K, яка є симетричною до точки Q(-6; 21) та точки P(12; -3), потрібно використовувати формулу симетрії відносно даної точки. Формула симетрії має наступний вигляд:

K(x, y) = 2C - P

де C - координати центру симетрії, а P - координати початкової точки.

Спочатку знайдемо координати центру симетрії:

C = (Q + P) / 2

Для точки Q(-6; 21): C = (-6 + 12) / 2 = 6 / 2 = 3

Тепер знаходимо координати точки K відносно центру симетрії:

K = 2C - P

Для точки P(12; -3): K = 2(3) - (12; -3) K = (6; 6) - (12; -3) K = (6 - 12; 6 - (-3)) K = (-6; 9)

Таким чином, координати точки K є (-6; 9).

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос