Вопрос задан 21.06.2018 в 01:32. Предмет Геометрия. Спрашивает Кузнецова Анна.

Выразите вектор AK через вектор KC , если вектор OK равен 3\5 вектора OA + 2\5 вектора OC, где О -

произвольная точка.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Колосов Дмитрий.

Вектор КС=ОС-ОК или КС=ОС-(3/5)ОА-(2/5)ОС=(3/5)*(ОС-ОА), отсюда
(ОС-ОА)=(5/3)*КС. (1)
Вектор АК=ОК-ОА или АК=(3/5)ОА+(2/5)ОС-ОА=(2/5)*(ОС-ОА). (2)
Подставим (1) в (2) и получим: АК=(2/5)*(5/3)*КС=(2/3)*КС.
Ответ: вектор АК=(2/3)*КС.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос