
Вопрос задан 20.06.2018 в 07:24.
Предмет Геометрия.
Спрашивает Епифанова Диана.
Плоскость, параллельная стороне BC треугольника АВС,пересекает сторону АВ в точке Р,а АС-в точке
Q.Сторона АВ равна 16см, а ВС 10см.Найдите:PQ при условии,что АР:PB=3:2; АР при условии,что PQ:BC=1:4

Ответы на вопрос

Отвечает Поморцева Анастасия.
1)
раз плоскость параллельна ВС, то прямая PQ будет тоже параллельна ВС
PQ ll BC
у нас получилось два подобных треугольника
∆APQ подобен ∆ABC по трем углам (<BAC - общий угол, <APQ =<ABC(соответственные углы), <AQP = <ACB(соответственные углы))
коэффициент подобия этих треугольников k = AP/(PB +AP) = 3/(2 + 3) = 3/5
PQ = BC *k = 10 * 3/5 = 6 cм
2)
раз плоскость параллельна ВС, то прямая PQ будет тоже параллельна ВС
PQ ll BC
у нас получилось два подобных треугольника
∆APQ подобен ∆ABC по трем углам (<BAC - общий угол, <APQ =<ABC(соответственные углы), <AQP = <ACB(соответственные углы))
коэффициент подобия этих треугольников k = PQ/BC = 1/4
АР = АВ *k = 16 * 1/4 = 4 см



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili