Вопрос задан 01.05.2023 в 16:59. Предмет Геометрия. Спрашивает Невмержицкая Кристина.

В треугольнике ABC известно, что AB=AC, отрезок AE - высота. На стороне AC отметили точку F такую,

что FE=AF. Докажите, что EF||AB.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Панченко Маша.

Ответ:

ЕF||AB

Объяснение:

в ^АВС АВ=АС(боковые стороны), значит ^АВС равнобедренный.

слеледовательно и углы при основании ВС равны (угол В= углу С)

Высота АЕ это медиана и биссектриса (св-во р.б треугольника)

значит угол ВАЕ=ЕАС

По условию задачи ЕF=AF, значит треуг-ник АFE равнобедренный (т.к. это боковые стороны)

значит и углы АЕF и FAE равны, а угол FAE равен углу EAB.

Следовательно и угол FEA равен углу EAB, а это накрестлежащие углы при секущей АЕ и они равны.

Значит ЕF||AB.

Надеюсь все понятно, ориентируйся по рисунку, удачи!


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос