Вопрос задан 17.04.2021 в 05:58. Предмет Геометрия. Спрашивает Чеботарь Влада.

Решить треугольник, если AB=3см, BC=6см, <B=60°

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Молдавченко Ирина.

Как-то так, ты проверь, наспех делал


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения треугольника, необходимо найти оставшиеся стороны и углы. Мы можем использовать тригонометрические соотношения для этого.

  1. Найдем угол A:

Угол A = 180° - угол B - угол C Угол A = 180° - 60° - 90° Угол A = 30°

  1. Найдем сторону AC, используя теорему косинусов:

AC² = AB² + BC² - 2AB·BC·cos(B) AC² = 3² + 6² - 2·3·6·cos(60°) AC² = 45 AC = √45 AC = 3√5 см

  1. Найдем сторону BA, используя теорему синусов:

sin(A) / AB = sin(B) / AC sin(A) / 3 = sin(60°) / (3√5) sin(A) = 3·sin(60°) / √5 sin(A) = 3/2 A = arcsin(3/2) A ≈ 90°

Заметим, что полученный угол A является острым углом, что говорит нам о том, что треугольник не существует. Поэтому мы не можем решить этот треугольник.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос