
Вопрос задан 04.03.2021 в 07:55.
Предмет Геометрия.
Спрашивает Аблажевич Дмитрий.
В кубе ABCD A1 B1C1D1 сторона основания равна 3см. Найдите площадь поверхности куба


Ответы на вопрос

Отвечает Дьяконова Елизавета.
Площадь поверхности куба равна 6*a^2, где а - ребро куба.
Т.к. сторона основания куба = 3 см, то все рёбра куба равны 3 см.
S=6*3^2=6*9=54



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения площади поверхности куба нужно сложить площади всех его граней.
У куба есть 6 граней, и все они равны по площади, так как все стороны куба равны между собой.
Площадь одной грани куба равна квадрату длины стороны основания.
В данном случае длина стороны основания равна 3 см, поэтому площадь одной грани равна 3^2 = 9 см^2.
Так как у куба 6 граней, общая площадь поверхности куба равна 6 * 9 = 54 см^2.
Таким образом, площадь поверхности данного куба составляет 54 квадратных сантиметра.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili