Вопрос задан 17.06.2018 в 15:14. Предмет Геометрия. Спрашивает Лебедев Павел.

Параллелограммы ABCD и ADFE лежат в разных плоскостях. Прямая m, параллельная BC, пересекает

плоскости ABE и DFС соответственно в точках H и P. Докажите, что четырехугольник HPFE – параллелограмм
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Блок Богдана.

Параллелограммы АВСD и ADFE лежат в разных плоскостях.Прямая m, параллельная ВС пересекает плоскости АВЕ и DCF соответственно в точках Н и Р. Доказать, что четырехугольник НРFE параллелограмм.
Плоскости ABE и DCF параллельны, так как пересекающиеся отрезки AЕ и АВ, лежащие в плоскости АВЕ, соответственно параллельны пересекающимся отрезкам DF и DC, лежащим в плоскости DCF.
Значит и отрезки НЕ и РF, лежащие в этих плоскостях, тоже параллельны.
Отрезок НР, принадлежащий прямой m, параллелен отрезку ВС, а значит параллелен AD и EF.
Итак, НЕ,PF и EF,НР попарно параллельны, значит четырехугольник HEFP - параллелограмм.


0 0
Отвечает Позднякова Арина.

Держите.
..................


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос