Вопрос задан 17.06.2018 в 12:36. Предмет Геометрия. Спрашивает Головкина Анастасия.

В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен

а, острый угол 45°. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол 60°. Найдите объем цилиндра.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Каспийская Александра.

Треугольник прямоугольный с углом 45, следовательно и второй угол =45. То есть треугольник равнобедренный. Отсюда, по теореме Пифагора его диагональ АС=а*(корень из2). Основание цилиндра это окружность радиусом R=АС/2. Поскольку центр окружности описанной около прямоугольного треугольника лежит на середине гипотенузы. Отсюда R=а*(корень из 2)/2. Обозначим призмуАВСА1В1С1. Проведём диагональ большей грани АС1. По условию угол С1АС=60. Тогда высота призмы и цилиндра Н=СС1=АС*tg60=а*(корень из 2)*(корень из 3)=а*(корень из 6). Тогда объём цилиндра V=пи*(R квадрат)*Н=пи*((а*(корень из 2)/2)квадрат*а*(корень из 6)=пи(а куб)*(корень из 6)/2.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос