Вопрос задан 09.02.2021 в 21:41. Предмет Геометрия. Спрашивает Вяткин Вова.

Радіус конуса = 3см. Знайти площу бічної поверхні, якщо твірна нахилена до площини основи під кутом

60°
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ivanova Karina.
ΔАОВ- прямоугольный. ∠АВО=90-60=30°. Катет АО лежит против угла 30°, гипотенуза АВ=2·АО=2·3=6 см.
Площадь боковой поверхности конуса вычислим по формуле S=πRL,
R=3 см; L=АВ=6 см.
S=3·6·π=18π см²
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб знайти площу бічної поверхні конуса, потрібно знати радіус основи та твірну, яка нахилена до площини основи під певним кутом.

У вашому випадку, радіус конуса становить 3 см. Також вам дано, що твірна нахилена до площини основи під кутом 60°.

Так як ви не надали довжину твірної, не можна прямо визначити площу бічної поверхні конуса. Проте, я можу показати вам, як обчислити цю площу, коли ви вказуєте довжину твірної.

Площу бічної поверхні конуса можна обчислити за формулою:

S = π * r * l,

де S - площа бічної поверхні, π - число пі (приблизно 3.14159), r - радіус основи, l - довжина твірної.

Якщо ви надаєте довжину твірної, я можу обчислити площу бічної поверхні конуса для вас.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос