Вопрос задан 14.06.2018 в 15:35.
Предмет Геометрия.
Спрашивает Бутина Милена.
Найдите площадь фигуры ,ограниченной дугой окружности и стягивающей ее хордой , если длина хорды
равна 4 м , а градусная мера дуги равна 60 градусов. Решите,пожалуйста,подробно!Ответы на вопрос
Отвечает Чуприн Семен.
Самое подробное решение.
Если дуга 60 градусов, то это 1/6 окружности. Поэтому площадь сектора, ограниченного этой дугой и двумя радиусами, проведенными в концы дуги, равна 1/6 площади круга.
А хорда разбивает этот сектор на 2 фигуры - сегмент, площадь которого надо найти, и треугольник, который является равносторонним, поскольку угол при вершине - это центральный угол дуги, равный 60 градусам.
Итак, радиус круга равен длине хорды, то есть 4, площадь круга pi*16; площадь сектора pi*16/6. Осталось вычислить площадь равностороннего треугольника со стороной 4, и отнять от площади сектора.
Площадь треугольника равна (1/2)*4^2*sin(60) = 4*корень(3);
Искомая площадь сегмента pi*16/6 - 4*корень(3)
Это примерно 1,44937717929727.
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
