Tg(arccos1-2arctg1/корень из 3)
Ответы на вопрос
наш пример:
tg (-2π/6) = -tg π/3 = -√3
To simplify the expression Tg(arccos(1 - 2arctg(1/√3))), let's break it down step by step.
First, let's consider the innermost function: arctg(1/√3). The tangent of an angle is equal to the ratio of the opposite side to the adjacent side in a right triangle. In this case, we have a right triangle with an opposite side of 1 and an adjacent side of √3.
Using the Pythagorean theorem, we can find the hypotenuse of the triangle:
h = √(1^2 + (√3)^2) = √(1 + 3) = 2
So, the tangent of the angle is 1/√3. We can find the angle itself using the inverse tangent function:
arctg(1/√3) = arctg(√3/3)
Next, we substitute this result into the expression Tg(arccos(1 - 2arctg(√3/3))). Now, let's consider the arccos function. The cosine of an angle is equal to the ratio of the adjacent side to the hypotenuse in a right triangle. In this case, we can form a right triangle with an adjacent side of (1 - 2arctg(√3/3)) and a hypotenuse of 1.
Using the Pythagorean theorem, we can find the opposite side of the triangle:
opposite = √(1^2 - (1 - 2arctg(√3/3))^2)
Now, we substitute this into the expression Tg(arccos(1 - 2arctg(√3/3))):
Tg(arccos(1 - 2arctg(√3/3))) = Tg(arccos(1 - 2arctg(√3/3))) = Tg(arccos(1 - 2arctg(√3/3)))
At this point, the expression cannot be simplified further without more specific values for the angles involved. If you provide specific values for the angles, I can calculate the result for you.
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
