
Упростите, применив формулы сокращенного умножения(m 3/4 - n 1/2)(m 1/4 + n 1/2).


Ответы на вопрос

Чтобы упростить выражение (m + 3/4 - n + 1/2)(m + 1/4 + n + 1/2), мы можем использовать формулы сокращенного умножения. Давайте разберемся с этим поэтапно.
1. Умножение первых членов: (m + 3/4) * (m + 1/4) = m * m + m * 1/4 + 3/4 * m + 3/4 * 1/4 = m^2 + m/4 + 3m/4 + 3/16
2. Умножение вторых членов: (m + 3/4) * (n + 1/2) = m * n + m * 1/2 + 3/4 * n + 3/4 * 1/2 = mn + m/2 + 3n/4 + 3/8
3. Умножение третьих членов: (-n + 1/2) * (m + 1/4) = -n * m - n * 1/4 + 1/2 * m + 1/2 * 1/4 = -mn - n/4 + m/2 + 1/8
4. Умножение четвертых членов: (-n + 1/2) * (n + 1/2) = -n * n - n * 1/2 + 1/2 * n + 1/2 * 1/2 = -n^2 - n/2 + n/2 + 1/4 = -n^2 + 1/4
Теперь мы можем объединить все члены:
(m^2 + m/4 + 3m/4 + 3/16) + (mn + m/2 + 3n/4 + 3/8) + (-mn - n/4 + m/2 + 1/8) + (-n^2 + 1/4)
Упрощаем выражение, сокращая подобные члены:
m^2 + m/4 + 3m/4 + 3/16 + mn + m/2 + 3n/4 + 3/8 - mn - n/4 + m/2 + 1/8 - n^2 + 1/4
Сокращаем подобные слагаемые и объединяем их:
m^2 + 2m/4 + 2m/2 + 3/16 + 3n/4 + 3/8 - n/4 + 1/8 - n^2 + 1/4
Далее упрощаем:
m^2 + m/2 + m + 3/16 + 3n/4 + 3/8 - n/4 + 1/8 - n^2 + 1/4
Наконец, объединяем все члены и приводим к общему знаменателю:
m^2 + (8m + 4m + 1m)/16 + (6 + 3n - n)/8 + (2 - 8n^2 + 4)/16
Теперь упрощаем числители:
m^2 + 13m/16 + (9 + 2n)/8 + (6 - 8n^2 + 4)/16
В результате получаем упрощенное выражение:
m^2 + (13m + 9 + 2n)/16 + (10 - 8n^2)/16


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili