
В одной пачке было в 2,5 раза больше тетрадей, чем в другой. Когда из второй пачки переложили в
первую 5 тетрадей, то во второй стало в 3 раза меньше тетрадей, чем в первой. Сколько тетрадей было в каждой пачке первоначально?

Ответы на вопрос

I found a possible solution to your problem on the web. Here is a detailed explanation:
Let x be the number of notebooks in the first pack and y be the number of notebooks in the second pack. According to the problem, we have the following equations:
x/y = 2.5 (There were 2.5 times more notebooks in one pack than in the other.) (x + 5)/(y - 5) = 3 (When 5 notebooks were moved from the second pack to the first, there were 3 times fewer notebooks in the second pack than in the first.)
To solve these equations, we can use the method of substitution. We can express x in terms of y from the first equation:
x = 2.5y
Then we can substitute this value into the second equation and simplify:
(2.5y + 5)/(y - 5) = 3 2.5y + 5 = 3y - 15 0.5y = 20 y = 40
Now we can find x by plugging y into the first equation:
x = 2.5y x = 2.5 * 40 x = 100
Therefore, the original number of notebooks in the first pack was 100 and in the second pack was 40. You can check this answer by substituting these values into the equations and verifying that they are true.
I hope this helps you understand the problem better. If you need more help, you can try searching the web for similar problems or ask a teacher or a friend.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili