Вопрос задан 02.09.2020 в 05:41. Предмет Математика. Спрашивает Голубятников Стас.

ПОМОГИТЕ ПОЖАЛУЙСТА СРОЧНО найти корень уравнения 1/2(4x-2)=-7

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, давай разберём это уравнение поэтапно.

Имеем уравнение: \(\frac{1}{2}(4x - 2) = -7\)

Шаг 1: Начнём с раскрытия скобок. Умножим \(\frac{1}{2}\) на \(4x - 2\):

\(\frac{1}{2} \cdot (4x - 2) = -7\)

Это приведёт нас к уравнению без скобок:

\(2x - 1 = -7\)

Шаг 2: Теперь нам нужно избавиться от числа \(-1\) справа от знака равенства. Добавим \(1\) к обеим сторонам уравнения:

\(2x - 1 + 1 = -7 + 1\)

\(2x = -6\)

Шаг 3: Теперь разделим обе стороны уравнения на \(2\), чтобы изолировать \(x\):

\(2x = -6\)

\(x = -3\)

Проверка:

Подставим \(x = -3\) обратно в исходное уравнение:

\(\frac{1}{2}(4x - 2) = -7\)

\(\frac{1}{2}(4(-3) - 2) = -7\)

\(\frac{1}{2}(-12 - 2) = -7\)

\(\frac{1}{2}(-14) = -7\)

\(-7 = -7\)

Проверка верна, значит, \(x = -3\) - корень уравнения.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос