В теннисном турнире участвовали n профессионалов и 2n любителей. Каждая пара теннисистов сыграла
ровно одну игру между собой. Известно, что отношение числа побед, одержанных профессионалами, к числу побед, одержанных любителями, равно 7/5 (в теннисе ничьих не бывает). Найдите n.Ответы на вопрос
        Ответ:
3
Пошаговое объяснение:
Всего было n * (n - 1) / 2 игр между профессионалами (в каждой такой игре победил профессионал), 2n * (2n - 1)/2 игр между любителями (соответственно, в таких играх побеждали любители) и n * 2n = 2n^2 игр, в которых приняли участие профессионал и любитель (допустим, в x из них победил профессионал, и в 2n^2 - x победил любитель).
Оценим возможное отношение числа побед профессионалов к числу побед любителей, оно равно
 [*}
Это отношение будет наименьшим при x = 0, когда все любители обыграли всех профессионалов, тогда оно равно (n - 1)/(8n - 2).
Это отношение будет наибольшим при x = 2n^2 (это соответствует всем поражениям любителей в матчах с профессионалами), значение отношения (5n - 1)/(4n - 2).
Найдем, при каких n 7/5 попадает в этот промежуток:
Итак, все возможные n - 1, 2 и 3. Заметим, что общее количество игр 3n (3n - 1)/2 должно быть кратно 7 + 5 = 12, это выполнено только для n = 3.
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			