
Вопрос задан 06.06.2018 в 04:14.
Предмет Математика.
Спрашивает Тахтарова Анна.
Дан равнобедренный прямоугольный треугольник MPK (угол P=90 градусов). Из вершины Р к плоскости
этого треугольника проведен перпендикуляр PN. Найдите расстояние от точки N до гипотенузы MK, если PN= √31 см, MP= 10 см

Ответы на вопрос

Отвечает Аяпбек Альбина.
Треугольник MPK равнобедренный, P = 90°. Значит, углы M и K равны 45°.
NT - расстояние от точки N до гипотенузы MK. Так как PN ⊥ MPK, T - середина MK.
Из треугольника MPK по т.Пифагора
MK = √(MP²+PK²) = √(100+100) = √(200) = 2√(50)
Так как T - середина MK,
MT = TK = √(50)
Рассмотрим треугольник MPT. Угол M = 45° по условию. Угол MPT = половине угла MPK, т.к. PT - высота и биссектриса треугольника MPK
∠MPT = 90°:2 = 45°
Треугольник MPT - равнобедренный, MT = PT = √(50)
Тогда из треугольника NPT по т.Пифагора
NT = √(PN²+PT²) = √(31+50) = √(81) = 9 см.



Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili