Вопрос задан 26.01.2020 в 15:17. Предмет Математика. Спрашивает Воинова Ярослава.

Разность двух нечетных чисел равна:32. Докажите что эти числа взаимно простые

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Юзыхович Егор.
Предположим, что нечётные числа n и n+32 делятся на одно и то же число k>1, причём k, очевидно, нечётно. Тогда их разность - 32 - также делится на это число. Но 32=2⁵, то есть, это число не делится ни на какое нечётное число, большее 1, получили противоречие. Значит, данные числа взаимно простые.
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос