
Вопрос задан 25.01.2020 в 07:48.
Предмет Математика.
Спрашивает Алексеева Елизавета.
Найдите наименьшее целое значение k, при котором уравнение x2−2(k+2)x+12+k2=0 имеет два различных
действительных корня.

Ответы на вопрос

Отвечает Маркинцевичь Юля.
X^2-2(k+2)x+12+k^2=0⇒
⇒D=4(k+2)^2-4(12+k^2)>0⇒
⇒4k^2+16k+16-48-4k^2>0⇒
⇒16k>32⇒k>2
k>2 ∧ k ∈ Z ⇒ k ∈ {3, 4, 5, ...} ⇒ min({3, 4, 5, ...}) = 3
Ответ: k=3.
⇒D=4(k+2)^2-4(12+k^2)>0⇒
⇒4k^2+16k+16-48-4k^2>0⇒
⇒16k>32⇒k>2
k>2 ∧ k ∈ Z ⇒ k ∈ {3, 4, 5, ...} ⇒ min({3, 4, 5, ...}) = 3
Ответ: k=3.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili