Вопрос задан 18.01.2020 в 03:50. Предмет Математика. Спрашивает Сычёв Матвей.

Помогите решить пожалуйста по действиям пример: 1(целая)8/11+2(целых)2/19*(1 4/5-2 3/4)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванов Максим.
Решение на изображении
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберемся с вашим математическим выражением:

\[1\frac{8}{11} \div 2\frac{2}{19} \times \left(1 + \frac{4}{5} - 2 + \frac{3}{4}\right)\]

1. Приведение дробей к общему знаменателю:

\[1\frac{8}{11} \div 2\frac{2}{19} \times \left(1 + \frac{4}{5} - 2 + \frac{3}{4}\right)\]

Сначала приведем дроби к общему знаменателю. Общим знаменателем для 11, 19, 5 и 4 будет \(11 \times 19 \times 5 \times 4 = 2090\).

\[\frac{1 \times 190 + 8}{11 \times 190} \div \frac{2 \times 2090 + 2}{19 \times 2090} \times \left(1 + \frac{4 \times 2090}{5 \times 2090} - 2 + \frac{3 \times 2090}{4 \times 2090}\right)\]

Упрощаем числители и знаменатели:

\[\frac{198 + 8}{2090} \div \frac{4180 + 2}{39710} \times \left(1 + \frac{8360}{10450} - 2 + \frac{6270}{8360}\right)\]

2. Деление:

\[\frac{206}{2090} \times \frac{39712}{4182} \times \left(1 + \frac{8360}{10450} - 2 + \frac{6270}{8360}\right)\]

Упрощаем дроби:

\[\frac{103}{1045} \times \left(1 + \frac{8360}{10450} - 2 + \frac{6270}{8360}\right)\]

3. Сложение и вычитание в скобках:

\[\frac{103}{1045} \times \left(\frac{10450 + 8360 - 2 \times 10450 + 6270}{10450}\right)\]

Упрощаем:

\[\frac{103}{1045} \times \left(\frac{8360 - 2 \times 10450 + 6270}{10450}\right)\]

\[\frac{103}{1045} \times \left(\frac{-2090}{10450}\right)\]

Упрощаем:

\[\frac{103}{1045} \times \left(\frac{-2}{10}\right)\]

\[\frac{103}{1045} \times \left(-\frac{1}{5}\right)\]

4. Умножение:

\[-\frac{103}{523}\]

Таким образом, результат вашего выражения равен \(-\frac{103}{523}\).

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос