
Сколько двузначных чисел, сумма цифр которых равна 8, и у которых цифры в записи числа разные


Ответы на вопрос

2/Задание № 1:
Сколько двузначных чисел, сумма цифр которых равна 8, и у которых цифры в записи числа разные?
РЕШЕНИЕ: Очевидно, что у числа 80 сумма цифр равна 8. Продолжая увеличивать цифру единиц и одновременно уменьшать цифру десятков, получим числа: 71, 62, 53, 44, 35, 26, 17. Но у числа 44 цифры в записи числа одинаковые. Остается 7 чисел.
ОТВЕТ: 7 чисел



Для решения данной задачи, мы можем использовать метод перебора.
Двузначное число, сумма цифр которого равна 8, может быть представлено в виде "ab", где "a" и "b" - различные цифры.
Переберем все возможные значения для "a" и "b". Заметим, что "a" может принимать значения от 1 до 7 (так как "a" должно быть меньше 9 и "b" должно быть больше 0 и меньше 9), а "b" может принимать значения от 1 до 8 (так как "b" должно быть меньше 9 и отличаться от "a").
Таким образом, количество двузначных чисел, сумма цифр которых равна 8 и у которых цифры в записи числа разные, можно найти следующим образом:
- Количество возможных значений для "a" равно 7 (от 1 до 7). - Для каждого значения "a" есть 8 возможных значений для "b" (от 1 до 8, исключая значение "a"). - Общее количество двузначных чисел, удовлетворяющих условию, равно 7 * 8 = 56.
Таким образом, ответ на задачу составляет 56 двузначных чисел.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili