
Из пунктов A и B одновременно навстречу друг другу выехали два велосипедиста встретились через 2
часа. С какой средней скоростью ехал каждый велосипедист если один из них проезжал за час на 3 км больше другого, а расстояние между A и B 42 км (по действиям)

Ответы на вопрос

Ответ: 9 км/ч ; 12 км/ч
Пошаговое объяснение:
х - скорость 1
х + 3 - скорость 2
(х + х + 3)2 = 42
4х + 6 = 42
4х = 36
х = 9 км/ч - скорость 1
9 + 3 = 12 км/ч - скорость 2



Problem Analysis
Two cyclists start simultaneously from points A and B and meet after 2 hours. The distance between A and B is 42 km. One of the cyclists travels 3 km more than the other in one hour. We need to find the average speed of each cyclist.Solution
Let's assume the speed of the first cyclist is x km/h and the speed of the second cyclist is y km/h. Since the first cyclist travels 3 km more than the second cyclist in one hour, we can write the following equation:x = y + 3 We know that the distance traveled by each cyclist can be calculated using the formula distance = speed × time. Since both cyclists meet after 2 hours, we can write the following equations:
x × 2 = distance from A to meeting point y × 2 = distance from B to meeting point We also know that the sum of the distances traveled by both cyclists is equal to the total distance between A and B:
distance from A to meeting point + distance from B to meeting point = 42 km Now, let's solve the equations to find the values of x and y.
From equation we can rewrite it as:
distance from A to meeting point = x × 2
From equation we can rewrite it as:
distance from B to meeting point = y × 2
Substituting these values into equation we get:
x × 2 + y × 2 = 42
Simplifying the equation, we have:
2x + 2y = 42
Dividing both sides of the equation by 2, we get:
x + y = 21 Now, we have two equations: equation and equation We can solve these equations simultaneously to find the values of x and y.
Substituting the value of x from equation into equation we get:
(y + 3) + y = 21
Simplifying the equation, we have:
2y + 3 = 21
Subtracting 3 from both sides of the equation, we get:
2y = 18
Dividing both sides of the equation by 2, we get:
y = 9
Substituting the value of y into equation we get:
x = 9 + 3
Simplifying the equation, we have:
x = 12
Therefore, the first cyclist traveled at an average speed of 12 km/h, and the second cyclist traveled at an average speed of 9 km/h.
Answer
The first cyclist traveled at an average speed of 12 km/h, and the second cyclist traveled at an average speed of 9 km/h.Explanation
The first cyclist traveled at a speed of 12 km/h, covering a distance of 24 km in 2 hours. The second cyclist traveled at a speed of 9 km/h, covering a distance of 18 km in 2 hours. The sum of their distances is equal to the total distance between A and B, which is 42 km.Therefore, the solution is consistent with the given information.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili