Вопрос задан 10.05.2019 в 10:47. Предмет Математика. Спрашивает Волк Макс.

Задача 8. Меняем цифры Мистер Фокс проделывает следующую операцию с многозначным числом: стирает

две первые его цифры и пишет вместо них их сумму. Например, из числа 4567 он получит сперва число 967, потом 157, потом 67, потом 13 и наконец 4. Когда остаётся только одна цифра, мистер Фокс успокаивается и больше ничего не делает. Какая цифра у него получится из числа 299999….9993 (в середине 2017 девяток)?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фазрахманова Карина.
299...3 -> 119...3 -> 29...3 ->...->23->5
Посредством четырех тысяч тридцати пяти операций мистер Фокс получил из числа 299999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 цифру 5.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить эту задачу, мы можем продолжать применять операцию Мистера Фокса до тех пор, пока не останется только одна цифра.

Итак, начнем со числа 299999….9993. Сначала стираем первые две цифры и записываем их сумму: 2 + 9 = 11.

Теперь у нас есть число 11. Снова стираем первые две цифры и записываем их сумму: 1 + 1 = 2.

Теперь у нас есть число 2. Снова стираем первые две цифры и записываем их сумму: 2.

Теперь у нас осталась только одна цифра - 2. Это и есть ответ на задачу.

Таким образом, из числа 299999….9993 Мистер Фокс получит число 2.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос