Вопрос задан 08.05.2019 в 13:25. Предмет Математика. Спрашивает Карашукеев Тимур.

В цилиндрическом сосуд налили 1700 см 3 воды.Уровень воды при этом достиг высоты 10 см.в жидкость

полностью погрузили деталь.при этом уровень жидкости в сосуде поднялся на 5 см.чему равен обьем детали? ответ в куб сантиметрах выразите
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бондаренко Александра.
1700 : 10 = 170 куб.см. В одном см. высоты. 170 • 5 = 850 куб.см.об"ем погружённой детали.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Volume of the Object

To calculate the volume of the object submerged in the cylindrical vessel, we can use the principle of displacement. According to Archimedes' principle, the volume of the object is equal to the volume of liquid displaced by the object when it is submerged.

Given: - Initial volume of water in the vessel: 1700 cm^3 - Initial height of the water level: 10 cm - Height of the water level after the object is submerged: 15 cm

To find the volume of the object, we need to calculate the difference in the volumes of water before and after the object is submerged.

The initial volume of water can be calculated by multiplying the initial height of the water level by the cross-sectional area of the vessel. Similarly, the final volume of water can be calculated by multiplying the final height of the water level by the cross-sectional area of the vessel.

Let's calculate the volume of the object step by step:

1. Calculate the cross-sectional area of the vessel: - We don't have the dimensions of the vessel, so we cannot calculate the exact cross-sectional area. Therefore, we will assume a circular vessel with a constant cross-sectional area throughout. - Since the vessel is cylindrical, the cross-sectional area can be calculated using the formula: A = π * r^2, where A is the cross-sectional area and r is the radius of the vessel. - Since we don't have the radius, we cannot calculate the exact cross-sectional area. For the purpose of this calculation, let's assume a radius of 5 cm.

Using the assumed radius of 5 cm, the cross-sectional area of the vessel is: - A = π * (5 cm)^2 = 25π cm^2

2. Calculate the initial volume of water: - The initial volume of water can be calculated by multiplying the initial height of the water level by the cross-sectional area of the vessel. - Initial volume = Initial height * Cross-sectional area - Initial volume = 10 cm * 25π cm^2 = 250π cm^3

3. Calculate the final volume of water: - The final volume of water can be calculated by multiplying the final height of the water level by the cross-sectional area of the vessel. - Final volume = Final height * Cross-sectional area - Final volume = 15 cm * 25π cm^2 = 375π cm^3

4. Calculate the volume of the object: - The volume of the object is equal to the difference between the final volume of water and the initial volume of water. - Volume of the object = Final volume - Initial volume - Volume of the object = 375π cm^3 - 250π cm^3 = 125π cm^3

Therefore, the volume of the object is 125π cm^3.

Please note that the volume is given in terms of π, which is an irrational number approximately equal to 3.14159. If you need the volume in decimal form, you can approximate it by substituting the value of π with 3.14159 in the final calculation.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос