Вопрос задан 08.05.2019 в 10:13. Предмет Математика. Спрашивает Sandul Sereoja.

В 15:00 из пункта А,двигаясь против течения реки в сторону пункта Б,вышел катер ПЕРВЫЙ,а навстречу

ему из пункта Б отправился катер ВТОРОЙ.в 15:12 путь,пройденный ВТОРЫМ,стал равен расстоянию между катерами. В этот момент ПЕРВЫЙ развернулся и пошел обратно к пункту А. ВТОРОЙ продолжал двигаться за ПЕРВЫМ до тех пор, пока ПЕРВЫЙ не прибыл в пункт А. В этот момент расстояние от ВТОРОГО до А равнялось 1,6 км. Развернувшись, ВТОРОЙ сразу же отправился обратно в пункт Б, куда и прибыл в 15:49. Чему равно расстояние по реке между пунктами А и Б?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Омарова Самира.
x-скорость лодки
у-скорость течения
z-искомое расстояние
t2-время возврата первого
(x-y) *12*60 = 1600
z-(x+у)*12*60=1600+1600
(x+y)*t2=1600
(x-y)*(49*60-12*60-t2)= z-1600

*************************
z-(2x-1600/(12*60))*12*60=1600+1600
(2x-1600/(12*60))*t2=1600
1600/(12*60)*(49*60-12*60-t2)= z-1600

*************************
Z=(2x-1600/(12*60))*12*60+1600+1600
(2x-1600/(12*60))*t2=1600
z=1600/(12*60)*(49*60-12*60-t2)+1600

*************************
Z=1600*12*60/t2+1600+1600
z=1600/(12*60)*(49*60-12*60-t2)+1600

************************
z=1600*(12*60/t2+2)
z=1600*(49*60-12*60-t2) /(12*60)+1)

******************
z=1600*(12*60/t2+2)
(49*60-12*60-t2) /(12*60)+1= 12*60/t2+2
******************
z=1600*(12*60/t2+2) 49/12-t2 /(12*60) = 12*60/t2+2
******************
z=1600*(12*60/t2+2)

t2^2-25*60*t2+12*12*60*60=0
d=25^2*60^2-4*12*12*60*60=60^2*(625-576)=60^2*49
t2=(25*60+60*7)/2=16*60
z=1600*(12*60/t2+2)= 1600*(12*60/(16*60)+2)= 1600*(2,75)=4400
м





0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given the following information: - At 15:00, Boat 1 (ПЕРВЫЙ) starts from point A and moves against the current of the river towards point B. - At the same time, Boat 2 (ВТОРОЙ) starts from point B and moves towards Boat 1. - At 15:12, the distance traveled by Boat 2 becomes equal to the distance between the two boats. - At this moment, Boat 1 turns around and heads back to point A, while Boat 2 continues to move towards Boat 1 until Boat 1 reaches point A. - At this moment, the distance between Boat 2 and point A is 1.6 km. - Boat 2 immediately turns around and heads back to point B, where it arrives at 15:49.

We need to find the distance between points A and B along the river.

Solution

Let's break down the problem step by step:

1. From 15:00 to 15:12, Boat 1 and Boat 2 are moving towards each other. The distance traveled by Boat 2 during this time is equal to the distance between the two boats. 2. At 15:12, Boat 1 turns around and starts moving back towards point A, while Boat 2 continues to move towards Boat 1 until Boat 1 reaches point A. 3. At this moment, the distance between Boat 2 and point A is 1.6 km. 4. Boat 2 immediately turns around and heads back to point B, where it arrives at 15:49.

To find the distance between points A and B along the river, we need to calculate the total distance traveled by Boat 2 from 15:00 to 15:49.

Let's calculate the time difference between 15:00 and 15:49: - 15:49 - 15:00 = 49 minutes

Now, let's calculate the time difference between 15:00 and 15:12: - 15:12 - 15:00 = 12 minutes

During the 12 minutes from 15:00 to 15:12, Boat 2 traveled a distance equal to the distance between the two boats. Let's denote this distance as 'd'.

During the remaining 49 minutes from 15:12 to 15:49, Boat 2 traveled a distance equal to the distance between point A and point B along the river.

To find the distance between points A and B along the river, we need to calculate the total distance traveled by Boat 2 from 15:00 to 15:49.

Let's denote the distance between points A and B along the river as 'x'.

From the given information, we have the following equations: - Distance traveled by Boat 2 from 15:00 to 15:12 = distance between the two boats = 'd' - Distance traveled by Boat 2 from 15:12 to 15:49 = distance between points A and B along the river = 'x'

We can set up the following equation based on the time and distance traveled: - 12 minutes * Boat 2's speed = 'd' - 49 minutes * Boat 2's speed = 'x'

Since the time is directly proportional to the distance traveled, we can set up the following proportion: - 12 minutes / 49 minutes = 'd' / 'x'

Now, let's solve the proportion to find the value of 'x', which represents the distance between points A and B along the river.

Solution Steps

1. Set up the proportion using the given information: - 12 minutes / 49 minutes = 'd' / 'x' 2. Solve the proportion for 'x': - 12 minutes * 'x' = 49 minutes * 'd' - 'x' = (49 minutes * 'd') / 12 minutes 3. Substitute the value of 'd' with the distance traveled by Boat 2 from 15:00 to 15:12: - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes * 'd') / 12 minutes - 'x' = (49 minutes

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос